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Abstract—This article investigates the problem of detection and
isolation of attacks on a water distribution network comprised
of cascaded canal pools. The proposed approach employs a bank
of delay-differential observer systems. The observers are based
on an analytically approximate model of canal hydrodynamics.
Each observer is insensitive to one fault/attack mode and sensitive
to other modes. Design of observers is achieved by using a
delay-dependent linear matrix inequality (LMI) method. The
performance of our model-based diagnostic scheme is tested on a
class of adversarial scenarios based on a generalized fault/attack
model. This model represents both classical sensor-actuator faults
and communication network-induced deception attacks. Our
particular focus is on stealthy deception attacks in which the
attacker’s goal is to pilfer water through canal offtakes. Our
analysis reveals the benefits of accurate hydrodynamic models
in detecting physical faults and cyber attacks to automated
canal systems. We also comment on the criticality of sensor
measurements for the purpose of detection. Finally, we discuss the
knowledge and effort required for a successful deception attack.

Index Terms—SCADA systems, Intrusion detection, Fault di-
agnosis, Supervisory control, Delay systems

I. INTRODUCTION

Modernization of irrigation canal systems is often viewed
as a solution for improving their operational performance.
In many countries, networked and fully gated irrigation sys-
tems have been instrumented with supervisory control and
data acquisition (SCADA) systems to enable communications,
sensing, and control. Real-time knowledge of the system state
and the ability to remotely control flows at critical points can
vastly improve performance of irrigation systems [1], [2]. To
sustain modernization plans of irrigation systems, a legislative
framework and well-defined rules for demand regulation and
maintenance are being developed. Today, numerous automatic
control methods are available for regulating water flow in canal
systems; see [3], [4] for a survey of these methods.
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However, modernization does not always imply reliable
service [5]. Even in developed countries, automated irrigation
systems are experiencing significant levels of water loss due
to management and distribution related inefficiencies. These
issues become more challenging for developing countries.
Clemmens [6] has argued that reduced water flows and large
deviations from target levels at downstream ends can lead to
inefficient water distribution. This can incentivize the end users
to tamper with canal system operations. For e.g., the farmers
at downstream ends may have incentives to steal water and not
pay for its use. In addition to the existing issues of random
faults and unauthorized withdrawals, an increased reliance on
open communication networks to transmit and receive control
data has added new concerns of cyber attacks [7], [8], [9].

In [10], we highlighted the ways in which simultaneous
and uncoupled cyber-physical faults (or cyber attacks) in
automated irrigation canal systems can be achieved by an
intelligent adversary. By presenting the results from a field
operational test, we showed that it is possible for an attacker
to withdraw water from an automated canal without getting de-
tected. This motivates the need of better fault/attack detection
mechanisms based on sound hydrodynamic principles. In this
article, we introduce a generalized fault/attack model which
permits us to consider both random sensor-actuator faults and
a class of cyber attacks. We focus on the design a fault/attack
detection and isolation (F/ADI) scheme based on accurate
hydrodynamic models. In our design, we use recent theoretical
results [18], [20], [21], [27] on observer design for time-delay
systems in the presence of unknown inputs.

A wide body of work already exists on the problem of
fault detection and isolation (FDI) of unknown withdrawals (or
leaks) [11], [12], and random sensor-actuator faults in canal
systems [13]. The authors in [13] use data reconciliation based
on static and dynamic models to isolate unknown withdrawals
and random faults. A simple finite-dimensional model of canal
flow is used in [12] to generate residuals between the model
and observed data. The residuals are aggregated over time by
a cumulative sum (CUSUM) algorithm (based on the theory of
change-point detection [14]). An alert for a leak is generated
when the CUSUM statistic reaches a given threshold. Under
the assumption that the size of the leak and the time of
start are known, [11] uses a bank of Luenberger observers
based on the shallow water equations to localize the leaks.
The authors of [11] also discuss the use of observed time-
difference between the effect of leaks seen at the upstream
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and downstream of canal pools to localize the leaks. Results
on stability of hyperbolic conservation laws [15], [16] are used
to prove observer stability in [11]. Response mechanisms to
address random faults are presented in [17].

The most closely related works to this article are [18]
and [19]. The article [19] provides a comparison of different
methods of residual generation based on finite and infinite
dimensional models. The authors propose that a properly tuned
CUSUM algorithm can achieve leak detection. An estimate of
water leakage is generated from residuals based on a simple
conversion formula. A technique to isolate a single sensor fault
from a single leak is presented based on monitoring of canal
pools located upstream and downstream of the suspect pool.
The article [18] uses unknown input observers (UIO) for time-
delay systems (e.g., [20], [21]) to design a FDI scheme for a
single canal reach. This approach was extended to multiple
pools when only downstream levels are measured in [22].

The problem of isolating sensor-actuator faults from un-
known water withdrawals is difficult because both these faults
have similar effect on the observer residuals. Moreover, to
the best our knowledge, the performance of available di-
agnostic schemes where sensor-actuator faults and unknown
water withdrawals occur simultaneously has been not been
investigated in the literature. From the viewpoint of security
of automated canal systems, such simultaneous faults form an
interesting class of attacks. Indeed, an intelligent attacker, who
is interested in water pilfering or has malicious intentions to
harm canal operations, can conduct such attacks [10]. In this
article, we further analyze such attacks.

The main contributions of this article are as follows:
• We present conditions for detectability and isolability of

faults due to non-simultaneous (and uncoupled) with-
drawals and sensor disturbances in cascade of canal
pools. Our UIO design uses an analytic approximation
of the canal hydrodynamics (Theorem 2). This model
captures the effect of both upstream and downstream flow
variations. The diagnostic scheme can be designed pro-
vided that a feasible solution to delay-dependent observer
stability criterion exists (Proposition 3), and observer
decoupling conditions are satisfied (Definition 1).

• We propose a F/ADI (diagnostic) scheme based on the
bank of UIOs, and analyze its performance under simulta-
neous and uncoupled faults (called attacks). Specifically,
we consider simultaneous compromise of one or more
sensor measurements and water pilfering using offtake
structures. We discuss the the implications of our findings
on the security of water SCADA systems. More generally,
our analysis points toward fundamental limitations of
model-based diagnostic schemes in isolating attacks to
distributed physical infrastructures.

This article is organized as follows: In Section II we first intro-
duce infinite-dimensional models for a cascade of canal pools,
and describe an analytically approximate finite-dimensional
model. This model is used to design a UIO based scheme for
detecting faults entering in state and measurement equations in
Section III. In Section IV, we present a generalized fault/attack
model which captures attack scenarios such as simultaneous
water pilfering through offtakes and sensor compromise. Next,

we analyze the advantages and limitations of the proposed di-
agnostic scheme. We also discuss security implications of typ-
ical attack scenarios resulting from our generalized fault/attack
model. Concluding remarks are drawn in Section V.

II. MODELS OF CANAL POOL CASCADE

A. Model of Flow Dynamics

Consider an irrigation system consisting of a cascade of m
canal pools. Each pool is represented by a portion of canal
in between two automated hydraulic structures. We assume
that pool i, where i = 1, . . . ,m has a prismatic cross-section
and is of length li (m). Let the space variable be denoted
by x ∈ [0, li] and time variable by t ∈ R+. The unsteady
flow dynamics of each canal pool are classically modeled by
the one-dimensional shallow water equations (SWE) [4]. The
SWEs are coupled hyperbolic PDEs with Ai(t, x) the wetted
cross-sectional area (m2) and Qi(t, x) the discharge (m3/s)
across cross-section Ai as the dependent variables, and t and
x as independent variables. The SWE for pool i is given by:

∂t

(
Ai

Qi

)
+ F(Ai,Qi)∂x

(
Ai

Qi

)
= H(Ai,Qi), (1)

on the domain x ∈ (0, li), t > 0 with

F(Ai,Qi) =

(
0 1

gAi∂AiYi(Ai)− Q2
i

A2
i

2Qi

Ai

)
,

H(Ai,Qi) =

(
0

gAi(Sbi − Sfi(Ai,Qi))

)
.

Here the notation ∂t, ∂x, and ∂Ai denote the partial deriva-
tives with respect to t, x, and Ai respectively. The function
Sfi(Ai,Qi) denotes the friction slope (m/m), Sbi the bed slope
(m/m), Yi(Ai) the water depth (m) in section Ai, and g the
acceleration due to gravity (m2/s). We model the friction slope
as Sfi :=

Q2
in

2
i

A2
iRi(Ai)4/3

, where ni is the Manning roughness
coefficient (sm−1/3), Ri(Ai) := Pi

Ai
is the hydraulic radius

(m), Pi is the wetted perimeter (m), Vi(t, x) :=
Qi(t,x)
Ai(t,x)

is the

average velocity (m/s) in section Ai, Ci(t, x) :=
√

gAi(t,x)
Ti(t,x)

is
the celerity (m/s), and Ti is the top width (m).

We assume that Vi < Ci (sub-critical flow), and therefore,
one boundary condition must be specified at each boundary.
The initial and boundary conditions are given by:

Qi(t, 0) = Qu
i (t), Qi(t, li) = Qd

i (t) + Pi(t), t ⩾ 0, (2)
Ai(0, x) = A0,i(x), Qi(0, x) = Q0,i(x), x ∈ (0, li). (3)

Here Qu
i (t) and Qd

i (t) denote the controllable upstream and
downstream boundary discharges (m3/s) for pool i respec-
tively, and Pi(t) denote the withdrawals through lateral off-
takes (m3/s). The boundary discharges are constrained as:

Qd
i (t) = Qu

i+1(t), t ⩾ 0 i = 0, . . .m. (4)

We also assume the following: a) the effect of offtakes along
the canal pool can be lumped into a single perturbation Pi(t)
acting near the downstream end of the pool1; b) the conversion

1Distributed withdrawals have been considered elsewhere (see e.g., [11]
and [23]). The FDI scheme presented in Section III can be extended to the
case of distributed withdrawals by suitable expansion of the observer bank.
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of the boundary discharges into automated movement of
hydraulic structures is handled by the respective controllers
located at these structures; c) the boundary discharges Qu

i (t)
and Qd

i (t) are control variables, the offtake withdrawals Pi(t)
are disturbance variables, and the levels Yi(t, 0) and Yi(t, li)
(i.e., the areas Ai(t, 0) and Ai(t, li)) are measured variables.

Overflow weirs and underflow gates are the most commonly
used hydraulic structures for regulating canal networks. These
structures can be in free-flow or submerged condition. In
submerged condition (resp. free-flow condition), the down-
stream level influences (resp. does not influence) the flow
through the structure. We define Y0(t, l0) := Yup(t) and
Ym+1(t, 0) := Ydo(t), where Yup(t) (resp. Ydo(t)) is the
upstream (resp. downstream) water levels of the first (resp.
last) canal pool in the cascade. The flow through structure i
is modeled by a static nonlinear relation Gi with following
general form (see Sec. 6.2 of [4]):

Qi(t, li) = Gi(Yi(t, li),Yi+1(t, 0),Ui(t)) (5)

for i = 0, . . . ,m, where Ui(t) denotes opening of the structure
(m) at time t.

B. Linearized Models

Under compatible and constant openings Ui(t) = Ūi, with-
drawals Pi(t) = P̄i, and levels Yup(t) = Ȳup, Ydo(t) = Ȳdo,
the system (1)–(4) achieves a steady state. Let the wetted area
and discharge in steady state be denoted by Āi(x) and Q̄i(x)
respectively; similarly for other variables. We henceforth omit
the dependence on x. Following [4], SWE (1) can be linearized
around a steady state (Āi, Q̄i). Let ai(t, x) := (Ai(t, x) −
Āi(x)), qi(t, x) := (Qi(t, x)− Q̄i(x)) be the deviations from
the steady state. The linearized SWE are given by:

∂

∂t

(
ai
qi

)
+ F̄i(x)

∂

∂x

(
ai
qi

)
+ Ḡi(x)

(
ai
qi

)
= 0, (6)

on the domain x ∈ (0, li), t ⩾ 0, where
(
ai(t, x), qi(t, x)

)T
is the state of canal pool i, and

F̄i(x) :=

(
0 1

αi(x)βi(x) αi(x)− βi(x)

)
,

Ḡi(x) :=

(
0 0

−γi(x) δi(x)

)
.

Omitting the dependence on x, and defining κi := 7
3 −

4Āi

3T̄iP̄i

∂P̄i

∂Ȳi
, we have αi = C̄i + V̄i, βi = C̄i −

V̄i, δi = 2g
V̄i

(
S̄fi − V̄2

i T̄i

gĀi

dȲi

dx

)
, and γi =

C̄2
i

T̄i

dT̄i

dx +

g
[
(1 + κi)Sbi − (1 + κi − (κi − 2)

V̄2
i T̄i

gĀi
)dȲi

dx

]
. System (6),

along with the initial and boundary conditions

ai(0, x) = a0,i(x) and qi(0, x) = q0,i(x), x ∈ (0, li), (7)

qi(t, 0) = qui (t) and qi(t, li) = qdi (t) + pi(t), t ⩾ 0, (8)

and the constraint

qdi (t) = qui+1(t), t ⩾ 0, (9)

form the linearized model for canal pool i, where qui (t) =
Qi(t, 0) − Q̄i(0) and qdi (t) = Qi(t, li) − Q̄i(li) denote the

Pool i
Pool i+ 1

Gate i− 1
Gate i

Gate i+ 1
ydi−1 yui ydi yui+1 ydi+1 yui+2

qi−1
qi

qi+1pi
pi+1

ui−1
ui

ui+1

Fig. 1. Schematic view of a multi-pool canal system (backwater flow
configuration).

boundary discharge deviations, and pi(t) = Pi(t) − P̄i the
withdrawal deviations from the respective steady states. We
note that for rectangular cross-sections, the linearized model
with yi(t, x) and ai(t, x) as state can be deduced by using

ai(t, x) = T̄(x)yi(t, x).

With a slight abuse of notation, we define (see Fig. 1):

qi−1(t) := qui (t), qi(t) := qdi (t),

yui (t) := yi(t, 0), ydi (t) := yi(t, li).
(10)

Finally, linearizing (5) about the steady state we obtain

qi(t) = bdi y
d
i (t) + bui+1y

u
i+1(t) + kiui(t), (11)

where ui(t) = (Ui(t) − Ūi) denotes the deviation in the
structure opening, the coefficients bdi =

(
∂YiGi

)
and bui+1 =(

∂Yi+1
Gi

)
are the feedback gains of upstream and down-

stream levels, and ki =
(
∂UiGi

)
is the gain of structure

opening. Note that bui+1 is strictly negative (resp. zero) for
submerged (resp. free-flow) condition, and bdi , ki are positive.

C. Integrator-Delay Model

Using analytic approximation in the frequency domain,
Litrico and Fromion have derived a finite-dimensional input-
output model which accounts for the effect of both upstream
and downstream variations (see also Section 5.3 in [4]). In
low-frequencies, this approximation is given by the integrator-
delay (ID) model2:(

ŷui (s)
ŷdi (s)

)
=

(
au
i

s −au
i

s e−τ̄is

ad
i

s e−τ
¯ i
s −ad

i

s

)(
q̂i−1(s)

q̂i(s) + pi(s)

)
.

(12)

The parameter aui (resp. adi ) corresponds to the inverse
of the equivalent backwater area for the upstream (resp.
downstream) water level, and the parameter τ̄i (resp. τ

¯ i
) is

the upstream (resp. downstream) propagation time delays, i.e.,
the minimum time for a change in the downstream (resp.
upstream) discharge to have an effect on the upstream (resp.
downstream) water level. For uniform flow, these parameters
can be obtained analytically [4]:

aui =
γi

αiβiT̄i

(
e

γili
αiβi − 1

) , adi =
γi

αiβiT̄i

(
1− e

− γili
αiβi

) ,
2The integrator-delay-zero (IDZ) model in [24] also accounts for high

frequencies by using a constant gain (in addition to an integrator and a delay).
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τ
¯ i

=
li
αi

, τ̄i =
li
βi

.

For non-uniform flow, these parameters can be computed via
direct system identification [1] or model reduction by numeri-
cally approximating the flow by several (virtual) uniform flow
pools (see [4], Chapter 4). Notice that (12) accounts for the
influence of both upstream and downstream discharge devia-
tions and thus, captures the input-output behavior in backwater
flow configurations (see Example 1 and Fig.1 below).

In the time-domain, we have the following ODE with
delayed inputs:

ẏui (t) = aui qi−1(t)− aui [qi(t− τ̄i) + pi(t− τ̄i)] ,

ẏdi (t) = adi qi−1(t− τ
¯ i
)− adi [qi(t) + pi(t)] .

(13)

Combining (11) and (13) gives the delay-differential equation:

ẏui (t) =aui
[
bdi−1y

d
i−1(t) + bui y

u
i (t)

]
− aui

[
bdi y

d
i (t− τ̄i) + bui+1y

u
i+1(t− τ̄i)

]
+ aui [ki−1ui−1(t)− kiui(t− τ̄i) + pi(t− τ̄i)]

ẏdi (t) =adi
[
bdi−1y

d
i−1(t− τ

¯ i
) + bui y

u
i (t− τ

¯ i
)+
]

− adi
[
bdi y

d
i (t) + bui+1y

u
i+1(t)

]
+ adi [ki−1ui−1(t− τ

¯ i
)− kiui(t)− pi(t)] .

(14)

We now consider the specific case of a two pools (m = 2)
canal with three submerged hydraulic gates (see Fig. 1 and
consider i = 1). For sake of simplicity, we will assume that
the upstream level at gate 0 and downstream level at gate 2 are
constant, i.e., yd0 = 0 and yu3 = 0, and moreover, the opening
of gate 2 is fixed, i.e., u2 = 0. The full model for the 2-pool
system can be written in state-space form as follows

ẋ(t) =
4∑

i=0

Aix(t− τi) +
4∑

i=0

Biu(t− τi)

y(t) = Cx(t),

(15)

where x :=
(
yu1 , yu2 , yd1, yd2

)T
∈ R4 is the state, u :=(

u0, u1, p1, p2
)T

∈ R4 denotes the known input, y :=(
yu1 , yu2 , yd1, yd2

)T
∈ R4 is the measured output; τ0 = 0,

τ1 = τ̄1, τ2 = τ
¯1

, τ3 = τ̄2, τ4 = τ
¯2

. The matrices C, Ai, Bi

are known matrices in R4×4 which are respectively given by
C = diag

(
1, 1, 1, 1

)
, and

A0 =


au
1 b

u
1 0 0 0

0 au
2 b

u
2 au

2 b
d
1 0

0 −ad
1b

u
2 −ad

1b
d
1 0

0 0 0 −ad
2b

d
2

 ,

B0 =


au
1k0 0 0 0
0 au

2k1 0 0
0 −ad

1k1 −ad
1 0

0 0 0 −ad
2

 ,

A1 =

0 −au
1 b

u
2 −au

1 b
d
1 0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

B1 =

0 −au
1k1 −au

1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

A2 =

 0 0 0 0
0 0 0 0

ad
1b

u
1 0 0 0

0 0 0 0

 , B2 =

 0 0 0 0
0 0 0 0

ad
1k0 0 0 0
0 0 0 0

 ,

A3 =

0 0 0 0
0 0 0 −au

2 b
d
2

0 0 0 0
0 0 0 0

 , B3 =

0 0 0 0
0 0 0 −au

2

0 0 0 0
0 0 0 0

 ,

A4 =

0 0 0 0
0 0 0 0
0 0 0 0
0 ad

2b
u
2 ad

2b
d
1 0

 , B4 =

0 0 0 0
0 0 0 0
0 0 0 0
0 ad

2k1 0 0

 .

Consider the case of unmeasured water withdrawals (denoted
δpi(t)) occurring through the offtakes, located at the down-
stream ends (see Fig. 1). Model (15) now becomes

ẋ(t) =
4∑

i=0

Aix(t− τi) +
4∑

i=0

Biu(t− τi) +
2∑

i=1

Eifi(t)

y(t) = Cx(t),
(16)

where

fi(t) =
(
δpi(t) δp̃i(t)

)T
, i = 1, 2

E1 =

 0 −au
1 0 0 0

0 0 0 0 0
−ad

1 0 0 0 0
0 0 0 0 0

 ,

E2 =

 0 0 0 0 0
0 0 0 −au

2 0
0 0 0 0 0

−ad
2 0 0 0 0

 .

(17)

with δp̃i(t) :=
(
δpi(t− τ1) . . . δpi(t− τ4)

)
.

We will consider the following numerical example of a
2−pool system throughout the article:

Example 1: (2−pool system in backwater configuration)
Consider (16) with following parameters: upstream (resp.
downstream) propagation delays τ̄1 = 846.5 s, τ̄2 = 750.5 s
(resp. τ

¯1
= 707.5 s, τ

¯2
= 647.5 s), equivalent inverse back-

water areas for upstream (resp. downstream) water levels
au1 = 3.975 × 10−5 m−2, au2 = 3.675 × 10−5 m−2 (resp.
ad1 = 3.21 × 10−5 m−2, ad2 = 3.115 × 10−5 m−2) . Let the
coefficients of linearized gate equations bd1 = 20.0, bd2 = 29.0,
bu1 = −21.36, bu2 = −25.36, k0 = 18.1, k2 = 12.1. Assume
that u(t) = 0 for t ∈ [−τ

¯1
,∞) and x(t) = 0 for t ∈ [−τ

¯1
, 0].

Water at the rate 0.1 m3/s is withdrawn from offtake of
pool 1 (resp. pool 2) during the interval 2.5 − 5.0 hr (resp.
15− 17.5 hr).

Fig. 2 shows the upstream and downstream water level
deviations under the the effect of unmeasured withdrawals
during a 24 hr simulation. Notice that, in contrast to the
model in [10], the model (16) captures the time delays in both
upstream and downstream propagation of level deviations due
to pool withdrawals.

III. UIO BASED FAULT DETECTION AND ISOLATION

In this section we present the design of unknown input
observers (UIO) for linear time delay systems when unknown
inputs are present in both state and measurement equations. A
bank of UIO observers so designed are then used for detection
and isolation under coupled disturbance/fault signals.
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Fig. 2. Example 2-pool system: Withdrawals (top), Pool 1 (middle) and Pool
2 (bottom) level deviations.

A. Unknown Input Observer Design

Consider the following linear, time-invariant, delay differ-
ential system (DDS) with unknown inputs:

ẋ(t) =
r∑

i=0

Aix(t− τi(t)) +

r∑
i=1

Biu(t− τi(t)) + Ef(t)

x(θ) = ρ1(θ), u(θ) = ρ2(θ), θ ∈ [−τmax, 0]

y(t) = Cx(t) +Hf(t),
(18)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known
input vector, f ∈ Rq the unknown input vector, y ∈ Rp the
measurement output vector, and ρ1 ∈ Rn and ρ2 ∈ Rm are
initial vector functions for the state and input. The matrices
Ai, Bi, C, and E are known real matrices of appropriate
dimensions. The matrix E (resp. H) is called the disturbance
distribution matrix for state (resp. observation) equation, and
Hf(t) (resp. Ef(t)) determines the unknown sensor distur-
bance (resp. unknown input uncertainty). The delays τi(t) are
bounded but possibly time varying, and satisfy:3

τi(t) ⩽ hi, τ̇i(t) ⩽ di < 1, i = 1, . . . , r,

τmax := max{h1, . . . , hr}
(19)

where hi and di are known constants.
Consider the following full-order observer for system (18):

ż(t) =
r∑

i=0

Fiz(t− τi) +
r∑

i=0

TBiu(t− τi) +
r∑

i=0

Giy(t− τi)

z(θ) = ρ3(θ), θ ∈ [−τmax, 0]

x̂(t) = z(t) +Ny(t),
(20)

where z(t) ∈ Rn is the observer state vector, ρ3 ∈ Rn the
initial vector function, and x̂(t) the estimate of x(t). The

3Time varying delays in automated canal systems can result via a commu-
nication network which transmits the sensor-control data packets.

matrices Fi, Gi, T and N are constant matrices of appro-
priate dimensions which must be determined such that x̂(t)
asymptotically converges to x(t), regardless of the presence of
unknown inputs f(t). Such an observer, if it exists, achieves
perfect decoupling from the unknown inputs. We define the
error between x(t) and its estimate x̂(t) as

e(t) = x̂(t)− x(t) = z(t)− T x(t) +NHf(t),

where T = In −NC. The error dynamics is given by

ė(t) =
r∑

i=0

Fie(t− τi)

+ (Fi − TAi + (Gi − FiN)C) x(t− τi)

− (TE + F0NH −G0H) f(t)

−
r∑

i=1

(FiN −Gi)Hf(t− τi) +NH ḟ(t)

(21)

Then it is straightforward to obtain the following result
Theorem 2: The full order observer (20) will asymptotically

estimate x(t) if the following conditions hold

1) ė(t) =
∑r

i=0 Fie(t− τi) is asymptotically stable,
2) In = T +NC,
3) Ḡi = Gi − FiN, i = 0, . . . , r,
4) Fi = TAi − ḠiC, i = 0, . . . , r,
5) Ḡ0H = TE,
6) ḠiH = 0, i = 1, . . . , r,
7) NH = 0.

Thus, the observer design problem is reduced to finding
the matrices T,N , and Fi, Ḡi, i = 0, . . . , r such that the
conditions in Theorem 2 are satisfied. For r = 4, i.e., the
case for 2−pool system, the conditions (2)–(7) in Theorem 2
can be written as follows:

SΘ = Ψ, (22)

where

S =
(
T N F0 Ḡ0 . . . F4 Ḡ4

)
∈ Rn×(6n+6p),

Θ =
(
Θ1 Θ2 Θ3

)
∈ R(6n+6p)×(6n+6q),

Ψ =
(
In 0

)
∈ Rn×(6n+6q),

with Θ1, Θ3, and Θ2 given by:

Θ1 =



In E
C 0
0 0
0 −H
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0



, Θ3 =



0 0 0 0 0
H 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 H 0 0 0
0 0 0 0 0
0 0 H 0 0
0 0 0 0 0
0 0 0 H 0
0 0 0 0 0
0 0 0 0 H



,
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Θ2 =



A0 A1 A2 A3 A4

0 0 0 0 0
−In 0 0 0 0
−C 0 0 0 0
0 −In 0 0 0
0 −C 0 0 0
0 0 −In 0 0
0 0 −C 0 0
0 0 0 −In 0
0 0 0 −C 0
0 0 0 0 −In
0 0 0 0 −C



.

Following the general solution of a set of linear matrix
equations (see e.g., [21]), there exists a solution to (22) if
and only if:

rank

(
Θ
Ψ

)
= rank

(
Θ
)
,

or equivalently,

rank

(
CE
H

)
= rank

(
E
H

)
. (23)

Under the above rank condition, a general solution of (22) is

S = ΨΘ+ −K(I −ΘΘ+), (24)

where K is an arbitrary matrix of appropriate dimension, and
Θ+ is the generalized inverse matrix of Θ given by Θ+ =
(Θ

T

Θ)−1Θ since Θ is of full column rank. The choice of
K is important in determining the asymptotic stability of the
observer. This can be seen by inserting (24) into condition (4)
of Thm. 2. The matrices Fi can now be expressed as:

Fi = χi −Kβi, i = 0, 1, . . . , 4, (25)

where

χ0 = ΨΘ+ (A0 0 0 − C 0 0 0 0 0 0 0 0)
T

χ1 = ΨΘ+ (A0 0 0 0 0 − C 0 0 0 0 0 0)
T

χ2 = ΨΘ+ (A0 0 0 0 0 0 0 − C 0 0 0 0)
T

χ3 = ΨΘ+ (A0 0 0 0 0 0 0 0 0 − C 0 0)
T

χ4 = ΨΘ+ (A0 0 0 0 0 0 0 0 0 0 0 − C)
T

β0 = Θ̃ (A0 0 0 − C 0 0 0 0 0 0 0 0)
T

β1 = Θ̃ (A0 0 0 0 0 − C 0 0 0 0 0 0)
T

β2 = Θ̃ (A0 0 0 0 0 0 0 − C 0 0 0 0)
T

β3 = Θ̃ (A0 0 0 0 0 0 0 0 0 − C 0 0)
T

β4 = Θ̃ (A0 0 0 0 0 0 0 0 0 0 0 − C)
T

with Θ̃ := (I −ΘΘ+). Under condition (23), and from above
results, the error dynamics (21) for r = 4 can be written as

ė(t) =
4∑

i=0

(χi −Kβi)e(t− τi(t)). (26)

Thus the problem of observer (20) design reduces to the
determination of the matrix parameter K such that the sta-
bility condition (1) of theorem 2 holds. We now give delay-
dependent conditions for the stability of the observer under

the delay bounds (19). By extension, similar conditions can
be determined for any r.

Proposition 3: Suppose that condition (23) is satisfied, and
let r = 4. Then there exists an asymptotically stable un-
known input observer (20), if for some scalars ϵ0, . . . , ϵ9 and
ϵ̄1, . . . , ϵ̄4, there exist matrices Si > 0, Zi > 0, Qi > 0,
Ri > 0, Ui, Wi, i=1,. . . ,4, and matrices Hi, i = 0, . . . , 9, U
and P > 0 such that the following linear matrix inequalities
(LMIs) are satisfied:(

Qi Ui

U
T

i Ri

)
⩾ 0, i = 1, . . . , 4, (27)


Φ h1H̄1 h2H̄2 h3H̄3 h4H̄4

∗ −h1Z̄1 0 0 0
∗ ∗ −h2Z̄2 0 0
∗ ∗ ∗ −h3Z̄3 0
∗ ∗ ∗ ∗ −h4Z̄4

 < 0, (28)

where

Z̄i :=

(
Si Wi

W
T

i Zi

)
, H̄i :=



−ϵ̄i(Pχ0 − Uβ0)
T

H0

−ϵ̄i(Pχ1 − Uβ1)
T

H1

−ϵ̄i(Pχ2 − Uβ2)
T

H2

−ϵ̄i(Pχ3 − Uβ3)
T

H3

−ϵ̄i(Pχ4 − Uβ4)
T

H4

ϵ̄iP H5

0 H6

0 H7

0 H8

0 H9


,

(29)

for i = 1, . . . , 4, and Φ = (ϕjk) is a symmetric matrix of the
form (44) with block elements ϕjk ; see Appendix VI. The
parameter matrix K is given by K = P−1U .
The proof is presented in the Appendix VI. We now present
our FDI scheme for delay-differential system of the form (18)
which uses the LMI method of Proposition 3.

B. Residual Generation

Consider j−th DDS, j = 1, . . . , s, with s candidate fault
signals:

ẋj(t) =
r∑

i=0

Aixj(t− τi) +
r∑

i=1

Biuj(t− τi) +
s∑

i=1

Eifi(t)

yj(t) = Cxj(t) +
s∑

i=1

Hifi(t).

(30)

The FDI scheme we consider here is required to detect the
occurrence as well as isolate an unknown signal fj(t) from
other unknown signals fk(t) k ̸= j. Each unknown signal
models a coupled disturbance/fault in the state and measure-
ment equations. Following [20], we consider the problem of
residual generation according to following definition:

Definition 1: (Residual Generation Problem) The problem
consists of finding residuals rj(t) defined as follows:

rj(t) := yj(t)− C x̂j(t), j = 1, . . . , s, (31)
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where x̂j(t) is the output of the j−th UIO of the form (20),
and yj(t) is the output of system (30), with the following
properties:

1) rj(t) is insensitive (i.e., robust) to fj(t),
2) rj(t) converges to zero asymptotically if fk(t) = 0, k ̸=

j for every t,
3) ∥rj(t)∥ ̸= 0 when fk(t) ̸= 0 for k ̸= j.4

If the residuals ri(t) i = 1, . . . , s satisfy the properties of
Definition 1, fault diagnosis can be successfully achieved (i.e.,
perfect decoupling) based on the following decision rule:

fj(t) ̸= 0 if ∥rj(t)∥ ≈ 0, and ∥rk(t)∥ ≠ 0, k ̸= j. (32)

We now discuss the FDI scheme for non-simultaneous with-
drawals for the 2-pool system.

Example 4: (FDI Scheme for Unknown Withdrawals) Sys-
tem (30) models a 2−pool system with r = 4, s = 2. Assume
E1 and E2 are of the form (17), H1 = H2 = 0, all other
parameters as in Example 1, and zero known input signal
u(t) = 0 (the system evolves in open-loop). Let the unknown
withdrawal from pool 1 (resp. pool 2) during the interval
2.5 − 5.0 hr (resp. 15 − 17.5 hr) be the fault signal f1(t)
(resp. f2(t)). Assume the bounds of the time delays τi(t) to
be 1.1 times their nominal values, i.e., h1 = 1.1× τ̄1, and so
on; and the time derivatives of the delays all less than 0.1, i.e.,
di < 0.1. Two observers are designed as follows:

Observer 1 (resp. observer 2) is designed to be insensitive
to f1(t) (resp. f2(t)). Residual rj(t) j = 1, 2 of the j−th
observer is defined by (31), and x̂j(t) is the output of j−th
UIO designed for the following model:

ẋj(t) =
4∑

i=0

Aixj(t− τi) +
4∑

i=0

Biuj(t− τi)

+ Ejfj(t) + E−jf−j(t)

yj(t) =Cxj(t).

(33)

where −j := (3 − j). In (33) f2(t) = 0 (resp. f1(t) = 0)
for observer 1 (resp. observer 2). The LMI conditions in
Proposition 3 are feasible for ϵ0 = 10, ϵ1 = · · · = ϵ9 = −1,
and ϵ̄1 = · · · = ϵ̄4 = −1, and the parameter matrices Fij , Gij ,
Tj and Nj (i = 0, . . . , 4) are obtained for the observers:

żj(t) =
4∑

i=0

Fijzj(t− τi) +
4∑

i=0

TjBiuj(t− τi)

+
4∑

i=0

Gijyj(t− τi)

x̂j(t) =zj(t) +Njyj(t).

4In [20], this condition is generalized to ∃p ⩾ 0 such that d
dfk

(
dprj(t)

dtp

)
̸=

0 for k ̸= j.
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Fig. 3. Fault signals δp1 and δp2 (top), and norms of residuals r1 and r2
corresponding to observer 1 and 2 respectively (bottom).

From the computed observer matrices T1 and T2 we obtain:

T1E1 = 10−15 ×

 0.040 0.041 0 0 0
−0.286 −0.054 0 0 0
0.241 0.010 0 0 0
−0.388 −0.330 0 0 0

 ≈ 0,

T1E2 =

−0.000 0 0 −0.000 0
0.288 0 0 0.149 0
−0.383 0 0 −0.021 0
0.044 0 0 0.289 0

 ̸= 0,

T2E1 =

 0.523 −0.106 0 0 0
−0.077 0.074 0 0 0
−0.026 0.479 0 0 0
0.000 0.000 0 0 0

 ̸= 0,

T2E2 = 10−14 ×

−0.014 0 0 −0.007 0
0.008 0 0 −0.006 0
0.002 0 0 −0.001 0
0.150 0 0 −0.227 0

 ≈ 0.

We can check that the residuals rj(t) j = 1, 2 in Example 4
satisfy the properties of Definition 1:

• r1(t) (resp. r2(t)) is insensitive to f1(t) (f2(t)) (follows
from UIO property of observers 1 and 2),

• The residual dynamics defined by

ṙj(t) = C

(
4∑

i=0

Fijej(t− τi)

)
,

converges to zero asymptotically when f−j(t) = 0 for
every t because the conditions of Theorem 2 are satisfied
(e.g., T1E1 = T2E2 = 0),

• ∥rj(t)∥ ≠ 0 when f−j(t) ̸= 0 since TjE−j ̸= 0, j = 1, 2.

Hence, the FDI scheme for the above example can be achieved
using the decision rule 32. From Fig. 3 we can observe that
the generated residuals successfully achieve FDI.

IV. ATTACK DETECTION AND ISOLATION

In this section, we study the performance of the FDI scheme
designed in Section III on a generalized fault/attack model.
This model allows the modeling of many adversarial scenarios
in which, differently from faults, the failure signals in the state
and measurement equations are uncoupled. For the sake of
simplicity, we will only consider the 2−pool system, noting
that similar analysis can be performed for multi-pool systems.
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A. Generalized Fault/Attack Model for Two Pool System

Consider the DDS when fault/disturbances signals in the
input and sensor measurements appear in uncoupled forms:

Σa =


ẋ(t) =

∑4
i=0 Aix(t− τi) +

∑4
i=0 Biu(t− τi)

+
∑s

i=0 Eifi(t)

y(t) = Cx(t) +
∑s

i=0 Higi(t),

(34)

where, fi(t) and gi(t) with i = 1, . . . , s are fault/disturbance
signals affecting the state and measurement equations. Notice
that this is in contrast to (30) where these signals are linearly
coupled. We now show that the model (34) can represent tradi-
tional faults such as non-simultaneous discharge withdrawals
(leaks) or sensor-actuator faults, and many adversarial scenar-
ios when these disturbances can be manifested simultaneously.

1) Leaks and Sensor-Actuator Faults: Unmeasured with-
drawals or leaks (denoted δpi(t)) may be caused by random
faults or deliberate tampering of offtakes [19]. For system (34),
such discharge withdrawals can be modeled by considering
s = 2, H1 = 0, H2 = 0, and E1 and E2 given by (17)
(see Example 1). Similarly, we can model the actuator fault
(denoted δui(t)) caused due to blockage of hydraulic structures
or intentional manipulation of control actions. Consider, for
example, H1 = 0, and H2 = 0, and

fi(t) =
(
δui(t) δũi(t)

)T
,

E1 =


au1k0 0 0 0 0
0 0 0 0 0
0 0 ad1k0 0 0
0 0 0 0 0

 ,

E2 =


0 −au1k1 0 0 0

au2k1 0 0 0 0
−ad1k1 0 0 0 0

0 0 0 0 ad2k1

 ,

with δũi(t) :=
(
δui(t− τ1) . . . δui(t− τ4)

)
. The sensor

signals yui (t) and ydi (t) may be subjected to random faults [17]
(e.g., effect of temperature variations in pressure sensors,
malfunction of electronic circuitry in ultrasonic sensors), or
b) adversarial biases which distort the true sensor signals
(e.g., false-data injection attack [23]). Sensor failures (denoted
δyi(t)) in system (34) can be modeled by considering s = 2,
E1 = 0, E2 = 0, and

gi(t) =
(
δyui (t) δydi (t)

)T
, i = 1, 2

H1 =


1 0
0 0
0 1
0 0

 , H2 =


0 0
1 0
0 0
0 1

 .
(35)

In many situations, faults/disturbance signals can appear in
both measurement and state evolution equations in a linearly
coupled manner, i.e., fi(t) = gi(t) and the system (34) takes
the same form as (18). For example, when a level sensor
measurement is subjected to an additive bias and is injected
in the system via output feedback control, the same bias will
enter in the state equation as well.
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Fig. 4. Attack on individual pools: Top: Residuals under attack on yu1 and
yd1 , Bottom: Residuals under attack on yu2 and yd2 .

Finally, note that the scheme proposed in Section III can
be extended to achieve detection and isolation of faults in all
the above mentioned scenarios under the assumption of non-
simultaneous faults (i.e., if fi(t) ̸= 0, then fj(t) = 0 where
j ̸= i).

2) Simultaneous and Uncoupled Attacks: In many adver-
sarial scenarios, the faults or disturbances on inputs and mea-
surements can enter in an uncoupled manner (i.e., fi(t) ̸= gi(t)
in (34)). Moreover, they can manifest simultaneously. Consider
an adversarial scenario for system (34) when a deception
attack simultaneously causes distortion of true sensor signals
and unknown water withdrawal from the offtake. This scenario
can be modeled with fi(t), E1 and E2 (resp. gi(t), H1 and
H2) given by (17) (resp. (35)). This attack was the main focus
of [10], where it was shown that a deception attack on sensor
signals prevented correct isolation of unknown withdrawals.

In general, without any prior knowledge of attack signals,
the FDI scheme of Section III cannot be extended to such ad-
versarial scenarios. In the following example, we evaluate the
performance of this scheme on different adversarial scenarios.

Example 5: Consider the FDI scheme designed in Exam-
ple 4 which generated correct residuals to detect and isolate
non-simultaneous withdrawals for 2−pool system. To eval-
uate the performance of this scheme when the true sensor
measurements are spoofed with an additive deception attack,
we consider four cases: 1) For each pool i, yui and ydi are
spoofed simultaneously (Fig. 4), 2) Both yu1 and yu2 are spoofed
simultaneously; similarly for yd1 and yd2 (Fig. 5), 3) Middle gate
measurements yd1 , yu2 are spoofed (Fig. 6), 4) All yu1 , yd1 and
yu2 are spoofed simultaneously; similarly for yd1 , yu2 and yd2
(Fig. 7). In all the four cases, it is assumed that the attacker
injects an additive attack such that the targeted level sensor
measurement signal does not deviate from zero. For example,
for case 1), gi(t) :=

(
−yui (t) −ydi (t)

)T
, where yui (t) and

ydi (t) are true measurement signals, and Hi is given by (35);
similarly for other cases.

B. Implications for Water Security

Based on the performance of our FDI scheme on adversarial
scenarios from the generalized attack model (34), and in par-
ticular from the deception attack scenarios of Example 5, we
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Fig. 5. Attack on upstream and downstream levels: Top: Residuals under
attack on yu1 and yu2 , Bottom: Residuals under attack on yd1 and yd2 .
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Fig. 6. Attack on the middle gate: Residuals under attack on yd1 , yu2 .

can make several interesting observations. Firstly, the rule (32)
can no longer be used to diagnose fault/attack scenarios when
the observer residuals do not satisfy the conditions for perfect
decoupling in Definition 1. However, in certain adversarial
scenarios, e.g., the case when yu1 and yu2 are spoofed in Fig. 5
(top), an acceptable diagnostic performance (i.e., approximate
decoupling) can be achieved using the following fault/attack
detection and isolation (F/ADI) rule:

fj(t) ̸= 0 if ∥rj(t)∥ < ϑfj , and ∥rk(t)∥ ⩾ ϑfk , k ̸= j, (36)

where the parameters ϑfi i = 1, . . . , s are the isolation
thresholds of the F/ADI scheme. These parameters can be
constant or time-varying depending on the nature fault/attack
scenarios, and determine the expected false-alarm and missed-
detection rates. For a discussion on the choice of isolation
thresholds in fault scenarios, we refer the reader to [25]
(and the reference therein). The choice of isolation thresholds
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Fig. 7. Stealthy attack: Top: Residuals under attack on yu1 , yd1 and yu2 ,
Bottom: Residuals under attack on yd1 , yu2 and yd2 .

becomes particularly important in security scenarios. An at-
tacker who knows these parameters can adaptively manipulate
sensor-control signals to evade detection [26].5 However, from
a practical viewpoint, these parameters can be chosen by
simulation-based testing under the fault/attack scenarios that
are likely to be encountered.

The F/ADI rule (36) may not successfully isolate unknown
withdrawals in a pool (say i) when both yui and ydi are
compromised. For example, in Fig. 4 (top), observer 1 which
was designed to be insensitive to f1 is no longer able to
maintain r1 to zero (whereas, r2 generated by observer 2 is
still sensitive to f1). However, notice that in this case f2 can
be still be correctly isolated using (36). From this observation,
it can be concluded that when both upstream and downstream
measurements of a canal pool are compromised, it is difficult
to isolate the local faults in the pool; however, faults in other
pools can still be isolated.

Another observation is that the location of compromised
sensor measurements relative to the location of the fault is
an important factor for achieving successful diagnosis. We
recall that, under our setting, the offtakes are located near the
downstream ends (see Fig. 1). From Fig. 4 (bottom) it can be
seen that, in contrast to Fig. 4 (top), the attack on downstream
measurements is more detrimental to the performance of
residuals in detecting unknown withdrawals from offtakes.
Since our diagnosis scheme is based on the physics-based
ID model (see model (14) in Section II), the effect of water
withdrawals is captured by both upstream and downstream
level sensors; however, the effect is more pronounced at the
downstream level sensors. This insight can also be applied
when both measurements of a single gate are compromised.
See Fig. 6 when attack on yd1 and yu2 of the middle gate makes
the diagnosis of fault f1 located near the gate difficult, while
f2 can still be diagnosed successfully based on (36).

Last but perhaps the most interesting observation is that
when sensor measurements of multiple pools are accessible
to a strategic attacker, the deception attack can be perfectly
stealthy, i.e., the attack can result in wrong diagnosis or may
not be even detected! Consider Fig. 7 (top) (resp. Fig. 7
(bottom)) when yu1 , yd1 and yu2 (resp. yd1 , yu2 and yd2) are
compromised. Residual r1 (resp. r2) which was only sensitive
to fault f2 (resp. f1) in the case of no attack, now reacts to
both faults, whereas r2 (resp. r1) is not sensitive to either
faults. Following (36), this leads to incorrect diagnosis, i.e.,
f1 is detected when f2 is presented and vice versa. Moreover,
from a practical viewpoint, the norms of residuals in the case
of such attacks may not be high enough to enable the F/ADI
rule (36) to distinguish these faults from random disturbances.

By comparing this stealthy attack with the stealthy attack
reported in [10], the following remarks can be made: 1)
From an attacker’s point-of-view more sensor measurements
(three sensors as opposed to a single sensor in [10]) need
to be compromised to achieve perfect stealthiness when the
F/ADI scheme proposed herewith is used, 2) The attacker
requires strategic knowledge (and perhaps more resources) to

5In this case, the problem becomes a dynamic game between the attacker
and the diagnostic scheme, where the informational assumptions become
crucial. Such a game theoretic analysis is outside the scope of our work.
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carry out such an attack; for e.g., only a particular choice
of compromised measurements results in a stealthy attack, 3)
In contrast to [10] where the f2 under the compromise of yd2
went completely undetected since neither residuals reacted to
the fault, here the residual r2 shows a delayed response (see
Fig. 7 (bottom)). Thus detection is not completely evaded in
this case, although the diagnosis is incorrect. The observed
delay is the delay in propagation of disturbance due to offtake
withdrawal in the second pool to reach the upstream of first
pool.

V. DISCUSSION AND CONCLUDING REMARKS

In this article, we developed a model-based scheme for
detection and isolation of a wide class of faults and attacks in
automated canal systems. The scheme is based on a bank of
UIO designed for a linear delay-differential system obtained
as an analytically approximate model of the linearized SWE.
Our approach is based on a simplified model of canal hydro-
dynamics which captures the influence of both upstream and
downstream variations. We present conditions for the existence
of a UIO when failure signals in the state and measurement
equations are coupled. These conditions are delay-dependent,
and can also incorporate communication network induced
time-delays in the sensor-control data. A residual generation
procedure is used to detect and isolate such failure signals.

Furthermore, the performance of the UIO based FDI scheme
is investigated on scenarios when the fault signals in the state
and measurement equations are uncoupled. Such scenarios can
result from the actions of an attacker which simultaneously
compromises sensor-control data and offtakes for the purpose
of water pilfering (or even for causing damage to the canal
system). For a class of attack scenarios, we also propose
a simple modification of the UIO based FDI scheme to a
threshold-based A/FDI scheme. While practical tuning rules of
the proposed A/FDI scheme is a topic of further investigation,
an interesting theoretical open question is to adapt these
threshold parameters to be sensitive to attacks.

From the viewpoint of cyber-security of canal automation
systems, we find that sensor redundancy (i.e., installation of
multiple sensors for each candidate fault/attack), and making
critical sensors more resilient to manipulation and tampering
is a reasonable cyber-defense strategy. For example, for the
cases when offtake withdrawals are located near the down-
stream end, the downstream level sensors are more critical for
successful isolation of failures and hence, more investment
should be made to make them tamper resistant.

When the compromise of sensor measurements is restricted
to a given pool, the diagnosis of faults that are local to the pool
is the most severely affected. The effect is also propagated to
neighboring pools, although to a lesser extent. However, when
sensor measurements from multiple pools are compromised
by a strategic and resourceful attacker, the F/ADI scheme can
result in an incorrect diagnosis (or even perfect stealthiness).
Thus, priority should be placed on reducing the chance of
multiple and coordinated compromises.

Finally, we believe that the insights presented in this article
motivates further investigation of novel model-based attack

diagnostic schemes which are not based on the assumptions
made by classical fault detection and isolation schemes (i.e.,
the assumption of non-simultaneous failure signals). From
our analysis we conclude that a proper selection of internal
model, and increased emphasis on securing critical sensor
measurements could lead to better performance of F/ADI
schemes under deception attacks. Such attack-sensitive diag-
nostic schemes will also assist in the development of automatic
control strategies which are resilient to a broad class of
physical faults and cyber-attack signals.

VI. APPENDIX

Proof: (Proof of Proposition 3) Under (28), we note that
Z̄i defined in (29) satisfies Z̄i > 0, i = 1, . . . , 4. Inspired by
the work of Lin et.al. [27], under (27) and P > 0, we consider
the following Lyapunov-Krasovskii functional:

V (e(t)) = e(t)
T

P e(t)

+
4∑

i=1

∫ t

t−τi(t)

(
e(s)
ė(s)

)T (
Qi Ui

U
T

i Ri

)(
e(s)
ė(s)

)
ds

+
4∑

i=1

∫ hi

0

∫ t

t−θ

(
e(s)
ė(s)

)T (
Si Wi

W
T

i Zi

)(
e(s)
ė(s)

)
ds dθ.

(37)

Let us define the following vectors:

η(t)
T

:=
(
ẽ(t)

T

, ˜̇e(t)
T
)
, ζ(s)

T

:=
(
e(s)

T

, ė(s)
T
)
.

where

ẽ(t)
T

:=
(
e(t)

T

, e(t− τ1(t))
T

, . . . , e(t− τ4(t))
T
)
,

˜̇e(t)
T

:=
(
ė(t)

T

, ė(t− τ1(t))
T

, . . . , ė(t− τ4(t))
T
)
.

We make the following two observations: First, using the
Leibnitz rule,

4∑
i=1

e(t− τi(t)) = 4e(t)−
4∑

i=1

∫ t

t−τi(t)

ė(s)ds,

we obtain for any matrices Hi, with appropriate dimensions,
and i = 0, . . . , 9,

0 =2

(
4∑

i=0

e(t− τi(t))
T

Hi +
9∑

i=5

ė(t− τi(t))
T

Hi

)

×

(
4e(t)−

4∑
i=1

e(t− τi(t))−
4∑

i=1

∫ t

t−τi(t)

ė(s)ds

)
,

(38)

or equivalently,

0 = 2η(t)
T

H∆1η(t)− 2
4∑

i=1

∫ t

t−τi(t)

η(t)
T

(
0

H
T

)T

ζ(s)ds,

(39)

where

H
T

:=
(
H

T

0 H
T

1 . . . H
T

9

)
,

∆1 :=
(
4 −1 −1 −1 −1 0 0 0 0 0

)
.
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Second, using
∑4

i=0 Fie(t−τi)− ė(t) = 0, we obtain for a
matrix P with appropriate dimensions and scalars ϵ0, . . . , ϵ9,
ϵ̄1, . . . , ϵ̄4:

0 =2

(
4∑

i=0

e(t− τi(t))
T

ϵi+

9∑
i=5

ė(t− τi(t))
T

ϵi +
4∑

i=1

∫ t

t−τi(t)

e
T

(s)dsϵ̄i

)
P

×

(
4∑

i=0

Fie(t− τi)− ė(t)

)
,

(40)

or equivalently,

0 =2η(t)
T

Υ∆2η(t)

− 2
4∑

i=1

∫ t

t−τi(t)

η(t)
(
−ϵ̄i∆

T

2P
T

0
)
ζ(s)ds,

(41)

where

Υ
T

:= P
T (

ϵ0 ϵ1 . . . ϵ9
)
,

∆2 :=
(
F0 . . . F4 −I 0 0 0 0

)
.

Adding (39) and (41) to the time derivative of V (e(t)) along
the solution of (21), we can write:

V̇ (e(t)) = 2e(t)
T

P ė(t) +
4∑

i=1

(
e(t)
ė(t)

)T (
Qi Ui

U
T

i Ri

)(
e(t)
ė(t)

)

−
4∑

i=1

(1− τ̇i(t))

×
(
e(t− τi(t))
ė(t− τi(t))

)T (
Qi Ui

U
T

i Ri

)(
e(t− τi(t))
ė(t− τi(t))

)
+

4∑
i=1

hi

(
e(t)
ė(t)

)T (
Si Wi

W
T

i Zi

)(
e(t)
ė(t)

)

−
4∑

i=1

∫ t

t−hi(t)

(
e(s)
ė(s)

)T (
Si Wi

W
T

i Zi

)(
e(s)
ė(s)

)
ds

+ 2η(t)
T

[H∆1 +Υ∆2]η(t)

− 2
4∑

i=1

∫ t

t−hi(t)

η(t)
T

H̄iζ(s)ds

+

4∑
i=1

(
τi(t)η(t)

T

H̄iZ̄iH̄
T

i η(t)

−
∫ t

t−τi(t)

η(t)
T

H̄iZ̄iH̄
T

i η(t)ds

)
(42)

where Z̄i and H̄i are given by:

Z̄i :=

(
Si Wi

W
T

i Zi

)
, H̄i :=



−ϵ̄i(PF0)
T

H0

−ϵ̄i(PF1)
T

H1

−ϵ̄i(PF2)
T

H2

−ϵ̄i(PF3)
T

H3

−ϵ̄i(PF4)
T

H4

ϵ̄iP
T

H5

0 H6

0 H7

0 H8

0 H9


,

for i = 1, 2, 3, 4. Using the fact that τi(t) ⩽ hi, and τ̇i(t) ⩽
di < 1, for i = 1, 2, 3, 4,

V̇ (e(t)) ⩽η(t)
T

(
Φ+

4∑
i=1

hiH̄iZ̄
−1
i H̄

T

i

)
η(t)

−
4∑

i=1

∫ t

t−hi(t)

Γi(t, s)
T

Z̄−1
i Γi(t, s)ds,

(43)

where Γi(t, s) :=
(
H̄

T

i η(t) + Z̄iζ(s)
)

, and the matrix Φ =

(ϕjk) represented as

ϕ00 ϕ01 ϕ02 ϕ03 ϕ04 ϕ05 ϕ06 ϕ07 ϕ08 ϕ09

∗ ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18 ϕ19

∗ ∗ ϕ22 ϕ23 ϕ24 ϕ25 ϕ26 ϕ27 ϕ28 ϕ29

∗ ∗ ∗ ϕ33 ϕ34 ϕ35 ϕ36 ϕ37 ϕ38 ϕ39

∗ ∗ ∗ ∗ ϕ44 ϕ45 ϕ46 ϕ47 ϕ48 ϕ49

∗ ∗ ∗ ∗ ∗ ϕ55 ϕ56 ϕ57 ϕ58 ϕ59

∗ ∗ ∗ ∗ ∗ ∗ ϕ66 ϕ67 ϕ68 ϕ69

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ77 ϕ78 ϕ79

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ88 ϕ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ99


,

(44)

with block elements ϕjk given by

ϕ00 =
4∑

i=1

(Qi + hiSi) + ϵ0 sym(PF0) + 4 sym(H0)

ϕ01 = ϵ0PF1 + ϵ1(PF0)
T

+ 4H
T

1 −H0,

ϕ02 = ϵ0PF2 + ϵ2(PF0)
T

+ 4H
T

2 −H0

ϕ03 = ϵ0PF3 + ϵ3(PF0)
T

+ 4H
T

3 −H0,

ϕ04 = ϵ0PF4 + ϵ4(PF0)
T

+ 4H
T

4 −H0

ϕ05 = P +

4∑
i=1

(Ui + hiWi)− ϵ0P + ϵ5(PF0)
T

+ 4H
T

5 ,

ϕ06 = ϵ6(PF0)
T

+ 4H
T

6 ,

ϕ07 = ϵ7(PF0)
T

+ 4H
T

7 ,

ϕ08 = ϵ8(PF0)
T

+ 4H
T

8 ,

ϕ09 = ϵ9(PF0)
T

+ 4H
T

9 ,

ϕ11 = ϵ1 sym(PF1)− (1− d1)Q1 − sym(H1)

ϕ12 = ϵ1PF2 + ϵ2(PF1)
T

−H1 −H
T

2 ,

ϕ13 = ϵ1PF3 + ϵ3(PF1)
T

−H1 −H
T

3 ,

ϕ14 = ϵ1PF4 + ϵ4(PF1)
T

−H1 −H
T

4 ,

ϕ15 = −ϵ1P + ϵ5(PF1)
T

−H
T

5 ,

ϕ16 = +ϵ6(PF1)
T

− (1− d1)U1 −H
T

6 ,
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ϕ17 = +ϵ7(PF1)
T

−H
T

7 ,

ϕ18 = +ϵ8(PF1)
T

−H
T

8 ,

ϕ19 = +ϵ9(PF1)
T

−H
T

9

ϕ22 = +ϵ2 sym(PF2)− (1− d2)Q2 − sym(H2)

ϕ23 = +ϵ2PF3 + ϵ3(PF2)
T

−H2 −H
T

3 ,

ϕ24 = +ϵ2PF4 + ϵ4(PF2)
T

−H2 −H
T

4

ϕ25 = −ϵ2P + ϵ5(PF2)
T

−H
T

5 ,

ϕ26 = +ϵ6(PF2)
T

−H
T

6

ϕ27 = −(1− d2)U2 + ϵ7(PF2)
T

−H
T

7 ,

ϕ28 = +ϵ8(PF2)
T

−H
T

8 ,

ϕ29 = +ϵ9(PF2)
T

−H
T

9

ϕ33 = −(1− d3)Q3 + ϵ3 sym(PF3)− sym(H3)

ϕ34 = +ϵ3PF4 + ϵ4(PF3)
T

−H3 −H
T

4 ,

ϕ35 = −ϵ3P + ϵ5(PF3)
T

−H
T

5 ,

ϕ36 = +ϵ6(PF3)
T

−H
T

6 ,

ϕ37 = +ϵ7(PF3)
T

−H
T

7

ϕ38 = +ϵ8(PF3)
T

− (1− d3)U3 −H
T

8 ,

ϕ39 = +ϵ9(PF3)
T

−H
T

9

ϕ44 = −(1− d4)Q4 + ϵ4 sym(PF4)
T

− sym(H4)

ϕ45 = −ϵ4P + ϵ5(PF4)
T

−H
T

5 ,

ϕ46 = +ϵ6(PF4)
T

−H
T

6 ,

ϕ47 = +ϵ7(PF4)
T

−H
T

7 ,

ϕ48 = +ϵ8(PF4)
T

−H
T

8 ,

ϕ49 = −(1− d4)U4 + ϵ9(PF4)
T

−H
T

9

ϕ55 =

4∑
i=1

(Ri + hiZi)− ϵ5 sym(P ),

ϕ56 = −ϵ6P
T

,

ϕ57 = −ϵ7P
T

,

ϕ58 = −ϵ8P
T

,

ϕ59 = −ϵ9P
T

,

ϕ66 = −(1− d1)R1,

ϕ67 = 0,

ϕ68 = 0,

ϕ69 = 0

ϕ77 = −(1− d2)R2,

ϕ78 = 0,

ϕ79 = 0,

ϕ88 = −(1− d3)R3,

ϕ89 = 0,

ϕ99 = −(1− d4)R4

where sym(M) := M + M
T

. From (43), we see that if(
Φ+

∑4
i=1 hiH̄iZ̄

−1
i H̄

T

i

)
< 0 (equivalently, using Schur

complements if LMI (28) holds), then V̇ (e(t)) < 0. Following
stability theory of delay differential equations [28], the error
dynamic (26) is asymptotically stable. Using (25) and defining
U := PK, we obtain H̄i.

Finally, from (25) and using U = PK, we obtain ϕjk:

ϕ00 =

4∑
i=1

(Qi + hiSi) + ϵ0 sym(Pχ0 − Uβ0) + 4 sym(H0)

ϕ01 = ϵ0(Pχ1 − Uβ1) + ϵ1(Pχ0 − Uβ0)
T

+ 4H
T

1 −H0,

ϕ02 = ϵ0(Pχ2 − Uβ2) + ϵ2(Pχ0 − Uβ0)
T

+ 4H
T

2 −H0

ϕ03 = ϵ0(Pχ3 − Uβ3) + ϵ3(Pχ0 − Uβ0)
T

+ 4H
T

3 −H0,

ϕ04 = ϵ0(Pχ4 − Uβ4) + ϵ4(Pχ0 − Uβ0)
T

+ 4H
T

4 −H0

ϕ05 = P +

4∑
i=1

(Ui + hiWi)− ϵ0P + ϵ5(Pχ0 − Uβ0)
T

+ 4H
T

5 ,

ϕ06 = ϵ6(Pχ0 − Uβ0)
T

+ 4H
T

6 ,

ϕ07 = ϵ7(Pχ0 − Uβ0)
T

+ 4H
T

7 ,

ϕ08 = ϵ8(Pχ0 − Uβ0)
T

+ 4H
T

8 ,

ϕ09 = ϵ9(Pχ0 − Uβ0)
T

+ 4H
T

9 ,

ϕ11 = ϵ1 sym(Pχ1 − Uβ1)− (1− d1)Q1 − sym(H1)

ϕ12 = ϵ1(Pχ2 − Uβ2) + ϵ2(Pχ1 − Uβ1)
T

−H1 −H
T

2 ,

ϕ13 = ϵ1(Pχ3 − Uβ3) + ϵ3(Pχ1 − Uβ1)
T

−H1 −H
T

3

ϕ14 = ϵ1(Pχ4 − Uβ4) + ϵ4(Pχ1 − Uβ1)
T

−H1 −H
T

4 ,

ϕ15 = −ϵ1P + ϵ5(Pχ1 − Uβ1)
T

−H
T

5

ϕ16 = +ϵ6(Pχ1 − Uβ1)
T

− (1− d1)U1 −H
T

6 ,

ϕ17 = +ϵ7(Pχ1 − Uβ1)
T

−H
T

7 ,

ϕ18 = +ϵ8(Pχ1 − Uβ1)
T

−H
T

8 ,

ϕ19 = +ϵ9(Pχ1 − Uβ1)
T

−H
T

9 ,

ϕ22 = +ϵ2 sym(Pχ2 − Uβ2)− (1− d2)Q2 − sym(H2)

ϕ23 = +ϵ2(Pχ3 − Uβ3) + ϵ3(Pχ2 − Uβ2)
T

−H2 −H
T

3 ,

ϕ24 = +ϵ2(Pχ4 − Uβ4) + ϵ4(Pχ2 − Uβ2)
T

−H2 −H
T

4

ϕ25 = −ϵ2P + ϵ5(Pχ2 − Uβ2)
T

−H
T

5 ,

ϕ26 = +ϵ6(Pχ2 − Uβ2)
T

−H
T

6

ϕ27 = −(1− d2)U2 + ϵ7(Pχ2 − Uβ2)
T

−H
T

7 ,

ϕ28 = +ϵ8(Pχ2 − Uβ2)
T

−H
T

8 ,

ϕ29 = +ϵ9(Pχ2 − Uβ2)
T

−H
T

9 ,

ϕ33 = −(1− d3)Q3 + ϵ3 sym(Pχ3 − Uβ3)− sym(H3)

ϕ34 = +ϵ3(Pχ4 − Uβ4) + ϵ4(Pχ3 − Uβ3)
T

−H3 −H
T

4 ,

ϕ35 = −ϵ3P + ϵ5(Pχ3 − Uβ3)
T

−H
T

5

ϕ36 = +ϵ6(Pχ3 − Uβ3)
T

−H
T

6 ,

ϕ37 = +ϵ7(Pχ3 − Uβ3)
T

−H
T

7

ϕ38 = +ϵ8(Pχ3 − Uβ3)
T

− (1− d3)U3 −H
T

8 ,

ϕ39 = +ϵ9(Pχ3 − Uβ3)
T

−H
T

9 ,

ϕ44 = −(1− d4)Q4 + ϵ4 sym(Pχ4 − Uβ4)
T

− sym(H4)

ϕ45 = −ϵ4P + ϵ5(Pχ4 − Uβ4)
T

−H
T

5 ,

ϕ46 = +ϵ6(Pχ4 − Uβ4)
T

−H
T

6

ϕ47 = +ϵ7(Pχ4 − Uβ4)
T

−H
T

7 ,

ϕ48 = +ϵ8(Pχ4 − Uβ4)
T

−H
T

8 ,

ϕ49 = −(1− d4)U4 + ϵ9(Pχ4 − Uβ4)
T

−H
T

9 ,
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ϕ55 =
4∑

i=1

(Ri + hiZi)− ϵ5 sym(P )

ϕ56 = −ϵ6P
T

,

ϕ57 = −ϵ7P
T

,

ϕ58 = −ϵ8P
T

,

ϕ59 = −ϵ9P
T

,

ϕ66 = −(1− d1)R1,

ϕ67 = 0,

ϕ68 = 0,

ϕ69 = 0,

ϕ77 = −(1− d2)R2,

ϕ78 = 0,

ϕ79 = 0,

ϕ88 = −(1− d3)R3,

ϕ89 = 0,

ϕ99 = −(1− d4)R4.
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nique (school training top level French officials)
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